Sustained plateau activity precedes and can generate ictal-like discharges in low-Cl(-) medium in slices from rat piriform cortex.
نویسندگان
چکیده
Interictal and ictal discharges represent two different forms of abnormal brain activity associated with epilepsy. Ictal discharges closely parallel seizure activity, but depending on the form of epilepsy, interictal discharges may or may not be correlated with the frequency, severity, and location of seizures. Recent voltage-imaging studies in slices of piriform cortex indicated that interictal-like discharges are generated in a two-stage process. The first stage consists of a sustained, low-amplitude depolarization (plateau activity) lasting the entire latent period prior to discharge onset. Plateau activity takes place at a site distinct from the site of discharge onset and serves to sustain and amplify activity initiated by an electrical stimulus. In the second stage a rapidly accelerating depolarization begins at the onset site and then spreads over a wide region. Here, we asked whether ictal-like discharges can be generated in a similar two-stage process. As with interictal-like activity, the first sign of an impending ictal-like discharge is a sustained depolarization with a plateau-like time course. The rapidly accelerating depolarization that signals the start of the actual discharge develops later at a separate onset site. As found previously with interictal-like discharges, local application of kynurenic acid to the plateau site blocked ictal-like discharges throughout the entire slice. However, in marked contrast to interictal-like activity, blockade of synaptic transmission at the onset site failed to block the ictal-like discharge. This indicates that interictal- and ictal-like discharges share a common pathway in the earliest stage of their generation and that their mechanisms subsequently diverge.
منابع مشابه
Sustained and accelerating activity at two discrete sites generate epileptiform discharges in slices of piriform cortex.
When near-threshold electrical stimulation is used to evoke epileptiform discharges in brain slices, a latent period of up to 150 msec elapses before the discharge begins. During this period most neurons are silent, and abnormal electrical activity is difficult to detect with microelectrodes. A fundamental question about epileptiform activity concerns how synchronous discharges arise abruptly i...
متن کاملCharacteristics of plateau activity during the latent period prior to epileptiform discharges in slices from rat piriform cortex.
The deep piriform region has an unusually high seizure susceptibility. Voltage imaging previously located the sites of epileptiform discharge onset in slices of rat piriform cortex and revealed the spatiotemporal pattern of development of two types of electrical activity during the latent period prior to discharge onset. A ramplike depolarization (onset activity) appears at the site of discharg...
متن کاملTransition from interictal to ictal activity in limbic networks in vitro.
The transition from brief bursts of synchronous population activity characteristic of interictal epileptiform discharges (IEDs) to more prolonged epochs of population activity characteristic of seizures (ictal-like activity) was recorded in juvenile rat hippocampal-entorhinal cortex slices and hippocampal slices using multiple-site extracellular electrodes. Epileptiform activity was elicited by...
متن کاملVoltage imaging of epileptiform activity in slices from rat piriform cortex: onset and propagation.
The piriform cortex is a temporal lobe structure with a very high seizure susceptibility. To investigate the spatiotemporal characteristics of epileptiform activity, slices of piriform cortex were examined by imaging electrical activity with a voltage-sensitive fluorescent dye. Discharge activity was studied for different sites of stimulation and different planes of slicing along the anterior-p...
متن کاملLimbic network interactions leading to hyperexcitability in a model of temporal lobe epilepsy.
In mouse brain slices that contain reciprocally connected hippocampus and entorhinal cortex (EC) networks, CA3 outputs control the EC propensity to generate experimentally induced ictal-like discharges resembling electrographic seizures. Neuronal damage in limbic areas, such as CA3 and dentate hilus, occurs in patients with temporal lobe epilepsy and in animal models (e.g., pilocarpine- or kain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 24 شماره
صفحات -
تاریخ انتشار 1999